Southern Pine Reference Design Values

Table 2 Mechanically Graded Lumber – 4" and less in thickness, 2" and wider

Based on Normal Load Duration and Dry Service (MC ≤ 19%) — See Tables A-1 thru A-4 for Adjustment Factors

		, (,		,		
Grade	Bending F _b	Tension Parallel to Grain F _t	Shear Parallel to Grain F _v 1	Compression Perpendicular to Grain F _{c⊥} ¹	Compression Parallel to Grain F _c	Mod Elas E	dulus of sticity E _{min}
Machine Stress Rat	ed (MSR) Lumber	,					
750f – 1.4E	750	425	175	565	925	1,400,000	710,000
850f – 1.4E	850	475	175	565	975	1,400,000	710,000
975f – 1.6E	975	550	175	565	1450	1,600,000	810,000
1050f – 1.2E	1050	450	175	565	1225	1,200,000	610,000
1050f – 1.6E	1050	575	175	565	1500	1,600,000	810,000
1200f – 1.3E	1200	600	175	565	1400	1,300,000	660,000
1200f – 1.6E	1200	650	175	565	1550	1,600,000	810,000
1250f – 1.6E	1250	725	175	565	1600	1,600,000	810,000
1350f – 1.4E	1350	750	175	565	1600	1,400,000	710,000
1450f – 1.3E	1450	825	175	565	1600	1,300,000	660,000
1500f – 1.5E	1500	900	175	565	1650	1,500,000	760,000
1500f – 1.6E	1500	900	175	565	1650	1,600,000	810,000
1500f – 1.7E	1500	900	175	565	1650	1,700,000	860,000
1650f – 1.5E	1650	1020	175	565	1700	1,500,000	760,000
1650f – 1.7E	1650	1020	175	565	1750	1,700,000	860,000
1800f – 1.6E	1800	1175	175	565	1750	1,600,000	810,000
1850f – 1.7E	1850	1175	175	565	1850	1,700,000	860,000
1950f – 1.5E	1950	1375	175	565	1800	1,500,000	760,000
1950f – 1.7E	1950	1375	175	565	1800	1,700,000	860,000
$2100f - 1.8E^2$	2100	1575	190	805	1875	1,800,000	910,000
2250f – 1.9E	2250	1750	190	805	1925	1,900,000	970,000
2400f – 2.0E	2400	1925	190	805	1975	2,000,000	1,020,000
$2550f - 1.8E^2$	2550	1400	190	805	2000	1,800,000	910,000
2550f – 2.1E	2550	2050	190	805	2025	2,100,000	1,070,000
2700f – 2.2E	2700	2150	190	805	2100	2,200,000	1,120,000
$2850f - 1.8E^2$	2850	1600	190	805	2100	1,800,000	910,000
2850f – 2.3E	2850	2300	190	805	2150	2,300,000	1,170,000
3000f - 2.4E	3000	2400	190	805	2200	2,400,000	1,220,000

(1) When a grade is qualified by test and quality controlled for specific gravity, the shear and compression perpendicular-to-grain design values may be higher.

(2) When not qualified by test and quality controlled for specific gravity, the grademark for mechanically graded lumber grades with a 1,800,000 psi modulus of elasticity design value shall include a specific gravity of .55, a shear value of 175 psi, and a compression perpendicular-to-grain value of 565 psi.

Design values for Southern Pine lumber are published by the Southern Pine Inspection Bureau (SPIB) after approval by the Board of Review of the American Lumber Standard Committee (ALSC). The Southern Forest Products Association (SFPA) does not test lumber of establish design values. Neither SFPA, nor its members, warrant that the design values are correct, and disclaim responsibility for injury or damage resulting from the use of such design values. The SPIB Standard Grading Rules for Southern Pine Lumber provide for numerous visual and mechanical lumber grades. However, not all of those possible grade/size combinations are produced or used in the marketplace. Check sources of supply as available grades and sizes are subject to change.

Southern Pine Reference Design Values

Table 2 (continued) Mechanically Graded Lumber – 4" and less in thickness, 2" and wider

Based on Normal Load Duration and Dry Service (MC≤ 19%) — See Tables A-1 thru A-4 for Adjustment Factors

Grade	Bending	Tension Parallel to Grain	Shear Parallel to Grain	Compression Perpendicular to Grain	Compression Parallel to Grain	Mo _ Elas	dulus of sticity
	Fb	Ft	F _v ¹	F _{c⊥} 1	F _c	E	E _{min}
Machine Evaluated	Lumber (MEL)						
M-32	750	425	175	565	925	1,400,000	650,000
M-33	850	475	175	565	975	1,400,000	650,000
M-5	900	500	175	565	1050	1,100,000	510,000
M-34	975	550	175	565	1450	1,600,000	750,000
M-35	1050	575	175	565	1500	1,600,000	750,000
M-6	1100	600	175	565	1300	1,000,000	470,000
M-7	1200	650	175	565	1400	1,100,000	510,000
M-36	1200	650	175	565	1550	1,600,000	750,000
M-37	1250	725	175	565	1600	1,600,000	750,000
M-8	1300	700	175	565	1500	1,300,000	610,000
M-10	1400	800	175	565	1600	1,200,000	560,000
M-9	1400	800	175	565	1600	1,400,000	650,000
M-38	1500	900	175	565	1650	1,600,000	750,000
M-11	1550	850	175	565	1675	1,500,000	700,000
M-29	1550	850	175	565	1650	1,700,000	790,000
M-12	1600	850	175	565	1675	1,600,000	750,000
M-13	1600	950	175	565	1675	1,400,000	650,000
M-39	1650	1020	175	565	1750	1,700,000	790,000
M-15	1800	1100	175	565	1750	1,500,000	700,000
M-16	1800	1300	175	565	1750	1,500,000	700,000
M-14	1800	1000	175	565	1750	1,700,000	790,000
M-40	1850	1175	175	565	1850	1,700,000	790,000
M-17 ³	1950	1300	175	565	2050	1,700,000	790,000
M-19	2000	1300	175	565	1825	1,600,000	750,000
M-18 ²	2000	1200	190	805	1825	1,800,000	840,000
M-20 ³	2000	1600	190	805	2100	1,900,000	890,000
M-30	2050	1050	175	565	1850	1,700,000	790,000
M-28	2200	1600	175	565	1900	1,700,000	790,000
M-21	2300	1400	190	805	1950	1,900,000	890,000
M-22	2350	1500	175	565	1950	1,700,000	790,000
$M-23^{2}$	2400	1900	190	805	1975	1,800,000	840,000
M-41 ²	2550	1400	190	805	2000	1,800,000	840,000
M-24	2700	1800	190	805	2100	1,900,000	890,000
M-25	2750	2000	190	805	2100	2,200,000	1,030,000
M-26	2800	1800	190	805	2150	2,000,000	930,000
$M-42^{2}$	2850	1600	190	805	2100	1,800,000	840,000
M-31	2850	1600	190	805	2150	1,900,000	890,000
M-27 ³	3000	2000	190	805	2400	2,100,000	980,000

(1) When a grade is qualified by test and quality controlled for specific gravity, the shear and compression perpendicular-to-grain design values may be higher. (2) When not qualified by test and quality controlled for specific gravity, the grademark for mechanically graded lumber grades with a 1,800,000 psi modulus of elasticity design value shall include a specific gravity of .55, a shear value of 175 psi, and a compression perpendicular-to-grain qualification and quality control.

Design values for Southern Pine lumber are published by the Southern Pine Inspection Bureau (SPIB) after approval by the Board of Review of the American Lumber Standard Committee (ALSC). The Southern Forest Products Association (SFPA) does not test lumber of establish design values. Neither SFPA, nor its members, warrant that the design values are correct, and disclaim responsibility for injury or damage resulting from the use of such design values. The SPIB Standard Grading Rules for Southern Pine Lumber provide for numerous visual and mechanical lumber grades. However, not all of those possible grade/size combinations are produced or used in the marketplace. Check sources of supply as available grades and sizes are subject to change.

Reference design values are for normal load duration under the moisture service conditions specified. Because the strength of wood varies with conditions under which it is used, reference design values should only be applied in conjunction with appropriate design and service recommendations from the *National Design Specification*[®] (*NDS*[®]) for Wood Construction published by the American Wood Council. The latest connection design information is also provided in the *NDS*.

Reference design values ($F_b F_t F_v F_{c\perp} F_c E E_{min}$) in Tables 1 thru 3 shall be multiplied by all applicable adjustment factors to determine adjusted design values ($F_b^{\prime} F_t^{\prime} F_v^{\prime} F_{c\perp} F_c^{\prime} E^{\prime} E_{min}^{\prime}$).

Table A-1 is excerpted from the NDS and summarizes the applicability of adjustment factors for solid-sawn lumber.

Table A-1 Applicability of Adjustment Factors for Sawn Lumber

	ASD only	ASD and LRFD	LRFD only
Activities Detinisties Lattie Reference Mattion Mattion	Contraction of the second of t	o transferration of the second s	Current Curre
$F_b' = F_b *$	$C_D * C_M * C_t *$	$C_L * C_F * C_{fu} * C_i * C_r *$	$2.54 * 0.85 * \lambda$
$F_t' = F_t *$	C _D * C _M * C _t *	C _F * C _i *	2.70 * 0.80 * λ
$\mathbf{F_v}' = \mathbf{F_v} *$	$C_D * C_M * C_t *$	C _i *	$2.88 * 0.75 * \lambda$
$\mathbf{F_c}' = \mathbf{F_c} *$	$C_D * C_M * C_t *$	C _F * C _i * C _P *	2.40 * 0.90 * λ
$\mathbf{F}_{\mathbf{c}\perp}$ = $\mathbf{F}_{\mathbf{c}\perp}$ *	C _M * C _t *	C _i *	C _b * 1.67 * 0.90
E´ = E *	C _M * C _t *	Ci	
$E_{\min} = E_{\min} *$	C _M * C _t *	C _i * C _T *	1.76 * 0.85
ASD – Allowable Stress	Design; LRFD – Load and Resistance	Factor Design	

Tables A-2 thru A-4 highlight the most common adjustment factors as they apply to Southern Pine. In addition, Table 1 and 3 footnotes provide information about the Size Factor, C_F . For complete information on adjustment factors, see the *NDS*.

Table A-2 Wet Service Factor, C_M

For lumber 2" to 4" thick

When dimension lumber is used under conditions where the moisture content of the wood in service will exceed 19% for an extended time period, reference design values shall be multiplied by the appropriate wet service factors to the right.

					Αρρπεδ το	an values
F b 0.85 ¹	F t 1.0	F_v 0.97	F_{c⊥} 0.67	F_c 0.8 ²	E 0.9	E _{min} 0.9
(1) When F	- b ≤ 1150 psi	, C _M = 1.0		(2) When F _c	≤750 psi, C	_M = 1.0

Table A-3 Load Duration Factor, CD

For all solid wood products – Allowable Stress Design Only

Wood has the property of carrying substantially greater maximum loads for short durations than for long durations of loading. Reference design values apply to normal load duration, meaning a load that fully stresses a member to its allowable design value by the application of the full design load for a cumulative duration of approximately ten years. When the cumulative duration of the full maximum load does not exceed the specified time period, all reference design values (except $F_{c\perp}$, E, and E_{min}) shall be multiplied by the appropriate load duration factor. Frequently used load duration factors are provided to the right.

Table A-4Flat Use Factor, Cfu

For lumber 2" to 4" thick

Reference bending design values, F_b , are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), F_b shall also be multiplied by the flat use factors to the right.

Applies to F_b , F_t , F_v , and F_c v	values
Does not apply to $F_{C\perp}$, E, and E_{min}	values

Annline to all values

Load Duration (Typical Design Loads)	CD	
Permanent (dead load)	0.9	
Ten years (occupancy live load)	1.0	
Two months (snow load)	1.15	
Seven days (construction load)	1.25	
Ten minutes (wind/earthquake load)	1.6	
Impact ¹ (impact load)	2.0	

(1) Load duration factors greater than 1.6 shall not apply to structural members pressure treated with waterborne preservatives, or fire-retardant chemicals. The impact load duration factor shall not apply to connections.

Applies to Fb values only

Flat Use I	Factors, C _{fu}		
Width (depth)	Thickness (breadth)		
	2″ & 3″	4″	
2″& 3″	1.0	-	
4″	1.1	1.0	
5″	1.1	1.05	
6″	1.15	1.05	
8″	1.15	1.05	
10" & wider	1.2	1.1	

